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Abstract. We present a new method to analyze, classify and character-
ize 3D landmark-based shapes. It is based on a framework provided by
oriented matroid theory, that is on a combinatorial encoding of convex-
ity properties. We apply this method to a set of skull shapes presenting
various types of coronal craniosynostosis.

1 Introduction

Since three decades,GeometryMorphometrics has revolutionized the quantitative
analysis of the variation of the shape of anatomical structures [1]. It can be defined
as a collection of methods that process directly the coordinates of landmarks, in
2D or in 3D, rather than with traditional distance or angle measurements. The
landmarks, which are in general points, can be defined by experts in anatomy
or can be automatically computed by geometrical feature extraction algorithms.
Landmark-based morphometry methods are now used in many medical applica-
tions but they present some important drawbacks as emphasised in [7,6].

In the superposition methods, many schemes of alignment have been proposed
to superimpose the sets of landmarks (e.g. Procrustes, matching of a specified
edge, etc.). The morphometrical result is then directly related to the alignment
scheme itself, which is often selected by guessing the potential variability of the
shape. Moreover, in some cases, the alignment scheme may result in transforming
a strictly local deformation into a global one (Pinocchio effect [4]).

In the deformation methods, the difficulty is to define an appropriate class of
transformations to warp a set of landmarks toward another. If the class is too
general, the reference shape may deform to anything without any geometrical
consistency. On the contrary, if the transformation is too constrained, there may
be no accurate registration. In both cases, the transformation parameters will not
properly characterize the shape deformation. Many mathematical formulations
have been proposed but they remain difficult to assess and interpret as we do
not know the potential variability of the shape.

Linear distance-based methods as the Euclidean Distance Matrix Analysis do
not require to define any geometrical transformation to align or deform the shape.
Nevertheless, the results which are based on inter-landmark distances are quite
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difficult to understand. The practitioner, indeed, does not only want not to know
that the shape of an anatomical structure has varied by a quantity, but also to
graduate this quantity on a standard scale and to localize the deformation. And
even if some procedures to identify the most influential landmarks were proposed
[3], this kind of methods remains little used for medical applications.

In this paper, we propose to encode 3D landmark configurations as oriented
matroids, a combinatorial mathematical structure which was developed over the
past forty years [2]. The idea is to code all the relative 3D positions of points of
the shape, without taking into account the distances between them. As in linear
distance-based methods, no alignment or deformation is to be computed. Using
tetrahedra orientations in the shape, we obtain a vector of discrete values (-1 or 1)
which characterizes the structure of the shape, independently of its size, its
position, or more generally of any linear isomorphism of the space (see Section 2).
The mathematical structure allows one to detect structural changes in a shape
such as the crossing of a landmark through the plane defined by three others,
and more generally all convexity properties involving subsets of landmarks. In
Section 3, we introduce some theoretical and computational method to analyze
and compare those shape representations. Let us point out that the discretization
allows to perform a morphometrical analysis, without any numerical error or
approximation. We show in Section 4 a clinical application to the classification
of coronal craniosynostosis, yielding simple formal/geometrical/combinatorial
characterizations of the classes within the studied set of individuals.

2 Combinatorial Structure of a 3D Model

LetE be a finite set of n labels. LetM be a set of n points labelled byE in the real
affine space of dimension 3. We call M a model. We assume that these n points
are in general position, meaning that every subset of E having four elements is
a basis of the affine space. We call basis such a subset B = {a, b, c, d}. Let B be
the set of all bases. For the sake of formal simplicity, we assume that E and B
are linearly ordered. Hence every element B = {a, b, c, d}< of B is ordered, and
we denote B = abcd. Then, for instance, B can be ordered lexicographically.
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Fig. 1. The two possible orienta-
tions of tetrahedron abcd given by
χM (abcd)

Every basis B in B gets a sign in {+1,−1},
called orientation or sign of B in M , and de-
noted χM (B). It is defined as the orientation
of the tetrahedron formed by the four points
in B with respect to the ordering of B and a
chosen orientation of the space. See Figure 1.

Equivalently, in linear algebra terms, and
in computational terms, χM (B) is the sign of
the determinant of the 4 × 4 matrix whose
columns give the coordinates of the points in
a canonical basis of the space, that is:

χM (abcd) = sign

(
determinant

⎛
⎝ 1 1 1 1

xa xb xc xd
ya yb yc yd
za zb zc zd

⎞
⎠
)
.
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Let χM be the list of signs of elements of B in M , with respect to the linear
ordering of B, that is χM = [χM (B1), χM (B2), χM (B3) . . .]. We call χM the
chirotope of M . We consider χM as a vector in the real space R

B of dimension
|B|; and for a vector x of this space, x(B) denotes the value of x at coordinate B.

Figure 2 shows an example of M on 5 points labelled by 1 < 2 < ... < 5. The
following table shows the ordered list of bases and their signs:

basis 1234 1235 1245 1345 2345
sign −1 −1 +1 −1 −1

yielding the chirotope χM = [−1,−1,+1,−1,−1] ∈ R
5.

Figure 3 shows another example M ′ on 5 points with the same labels. The
chirotope of M ′ is χM ′ = [+1,−1,+1,−1,−1]. In comparison with M from
Figure 2, the point 1 has crossed the plane 234 (and no other plane spanned by
points of the model). That is why χM and χ′

M differ only with the sign of the
basis 1234. Also, for example, it can be read from the chirotope if the point 1
belongs or not to the convex hull formed by the other points.

Observe also that if a point moves in M without crossing a plane spanned by
other points, then χM does not change. The properties encoded by χM do not
depend directly on numerical measures (distances, angles...), and this combina-
torial encoding rather describes the “structural shape” of the point set.

The properties of χM are known as the uniform oriented matroid theory [2].
This rich mathematical theory is forty years old and can be seen as a combinato-
rial abstraction of linear algebra. In the case of real points, the oriented matroid
defined by χM is a mathematical structure which is combinatorial (i.e. defined
on a finite set), encodes the relative positions of the points of M , and catches in
particular all their convexity properties1.

In this paper, we use this information to compare models, labelled by a same
set, practically given by landmarks. Formally, we fix a set M of models M
labelled by E, and we study the set of χM , for M ∈ M.
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Fig. 2. A model M . Full lines belong to the
front part of the convex hull; light dashed
lines belong to its back part; the medium
dashed line 15 is inside the convex hull.
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Fig. 3. A model M ′ obtained from M
by moving 1 inside the tetrahedron
2345. The lines 12, 13, 14 and 15 are
now inside the convex hull.

1 We mention that the case where points may not be in general position leads to a
possible 0 sign for the values χM (B), and to the general theory of oriented matroids.
In this paper, for the sake of clarity and concision, we focus on the uniform case.
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3 Method of Analysis

3.1 General Scope

The main concept to compare models in M is the following. For a subset D of
B, and two vectors x and y in R

B, we define the distance between x and y w.r.t.
D as

dD(x, y) = (1/2) ·∑B∈D | x(B) − y(B) |
which is, mathematically, a distance for projections onto the space R

D. In what
follows we make the abuse to call dD a distance in R

B even when D �= B. Observe
that the distance dD between two chirotopes χM and χM ′ equals the number of
bases in D having different signs in M and M ′.

Let us now consider a partition of M in two classes M = C � C′, or, more
generally, a partition into k classes M = C1 � . . . � Ck. Such a partition can be
given by the experts that provided the models (e.g. four known medical types
for skulls as in Section 4). On the other hand, such a partition can be built using
the chirotopes of the models without any other preliminary knowledge. Note
that if classes satisfying automatic unsupervised classification criteria match
classes given by experts, then it means that the combinatorial data captures
some geometrical properties that characterize the classes in which the experts
are interested, and yields a formal characterization of those classes.

Once a partition is given, either by experts or by automatic classification, a
second step is to characterize classes using the less possible information from the
chirotopes. For instance, we look for a few bases whose signs allow to determine
if a model belongs to a given class or not. In terms of applications, those bases
should be significant, providing either a mathematical formal confirmation of
criteria used by experts, or new properties pointing out typical features of the
class that would interest experts.

3.2 Automatic Classification

Given a set C of models, the barycenter mC of C is the vector in R
B whose coor-

dinate at basis B is the mean of the signs of models in C at basis B, that is:

mC(B) = 1
|C|
∑

M∈C χM (B).

We say that the partition M = C � C′satisfies the k-means criterion if for every
M ∈ M we have:M ∈ C if and only if dB(χM ,mC) < dB(χM ,mC′), andM ∈ C′ if
and only if dB(χM ,mC) > dB(χM ,mC′). Of course, this criterion directly extends
to a partition into k classes.

Various clustering algorithms can be used to build automatically a partition
into classes satisfying criteria such as the above one. The most classical one
consists in initializing arbitrary classes, computing the barycenters for each class
and move a model to an other class if it is closer to the barycenter of this other
class than to the barycenter of its initial class. Repeating this procedure until
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stability yields a partition satisfying the k-means criterion. Then, one may test
many initializations and select an “optimal” classification.

For lack of space, we just mention that such an algorithm allows to detect
“mean” individuals among the classes, characterized by “mean” chirotopes, and
that other clusterisation algorithms can be used (e.g. k-medoids).

3.3 Characterization of Classes

Assume that a partition M = C � C′ is given. We now look for simple and
significant combinatorial criteria defining this partition.

Formally, in this paper, we will build classes depending on three parameters:
a set D of bases, a vector x in the space R

B, and a real value l. We define

CD,x,l = {M ∈ M | dD(χM , x) ≤ l}.
This set can be considered as the set of model chirotopes contained in a “ball”
in the space R

B, centered at x and of radius l for the distance dD.
Practically, we look for a subset D of B the smallest possible for simplicity,

for a vector x in R
D with coordinates in {−1,+1}, and for an integer value l,

such that CD,x,l is equal to class C. In this combinatorial setting, a model M
belongs to the class C if and only if there are at most l bases B in D such
that χM (B) �= x(B). Hence, D serves as a significant set of bases, x as the
characteristic values of these bases for C, and l as a threshold value to the fact
that a model fits this charateristic values.

As an example of particular interest, consider the case where D consists of a
single basis D = {B}. Then x is given by a single sign, say x(B) = +1. Then a
model M belongs to C if and only if χM (B) = +1, and it belongs to C′ if and
only if χM (B) = −1. Equivalently, we have C = C{B},+1,0. In this case, the sign
of B determines if M belongs to C or not. We say that B is totally discriminant
for the class C. This is the most simple possible characterization of a class.

The problem is to detect such parameters D, x, l. Let us use the following
procedure. For a basis B, we define the discriminability of B as τ(B, C, C′) =|
mC(B)−mC′(B) | /2. This value belongs to [0, 1]. The closer to 1 this value is, the
more significant the basis B is for the class C. The extreme case is τ(B, C, C′) = 1,
implying that mC(B) = +1 and mC′(B) = −1 (or the inverse), and then, by
definition of mC and mC′ , that every model in C (resp. C′) has value +1 (resp.
−1), meaning that B is totally discriminant for C and C′. On the contrary,
τ(B, C, C′) = 0 can be obtained for instance when B has the same sign in every
model in M, or also at the limits when B has a random sign; hence we cannot
expect B to be significant to describe C.

We can order the bases in B according to their discriminability. This
ordering allows a computation to search parameters D, x, l. Indeed, from the
computational viewpoint, there may be a huge number of elements in B (any
set of four landmarks is a basis), and hence a non-affordable number of subsets
D to test. Considering only bases with high discriminability allows to restrict
the number of subsets to be tested, while focusing on the information that has
some chance to be significant. So we consider bases having the highest possible
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discriminability to build a set D and an integer l as required. The values x(B)
determining x are naturally given by the signs of mC(B)−mC′(B) for B ∈ D.

Observe that if a partition M = C1 � . . . � Ck is given and such parameters
are known for every class Ci in the partition, then we have two independent
criteria to detect a class: first the direct criterion provided by the parameters
characterizing Ci, secondly the negation of the criteria determining that a vector
belongs to another class Cj, j �= i.

4 Applications to Coronal Craniosynostosis

Coronal craniosynostosis is a rare infant pathology in which one of the two
coronal sutures of the skull prematurely fuses by ossification. We can distinguish
between left (LUCS), resp. right (RUCS), uni-coronal craniosynostosis when only
one side is affected and the bilateral case (BCS) when both sides are fused. It
is essential to use 3D morphometric tools to quantify and analyze precisely the
deformation of the skull shape in this pathology. In [5], the authors used classical
landmark-based tools (Procrustes and Principal Component Analysis) to study
a database of the International Craniosynostosys Consortium and assess the
(a)symmetry of the pathology. We could test our new morphometric method on
the same data and we propose below some preliminary results.

The clinical database is composed of CT-Scan images of 40 children diagnosed
with non syndromic coronal craniosynsostis (LUCS=8 / RUCS=17 / BCS=15 )
and 20 unaffected individuals of the same age. Anatomy experts pointed 41 land-
marks on these CT-Scan and added 92 semilandmarks along predefined curves,
as illustrated on Figure 4. No alignment or spatial normalization was performed.

To compute the
(
133
4

)
tetrahedron signs, it takes about 6 hours on a standard

PC. This process is performed only once. The k-means clustering itself takes
about 30 seconds on a standard PC, but one wants to run it multiple times
(1000 in our application) with different starting positions.

First, we present results obtained by using the whole set of 133 landmarks.
We started off by testing if the four classes given by the experts (BCS, LUCS,
RUCS and Unaffected) satisfie the k-means criterion. This criterion is satisfied
by these four classes, so we can assume that the premature fusion of sutures

Fig. 4. Illustration of the 133 3D landmarks (RUCS skull shown here). Anatomical
landmarks are in red and curve semilandmarks are displayed in green.
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corresponds to changes in the skull shape chirotopes. We applied the k-means
algorithm to find a partition of the 60 individuals in 4 clusters which minimizes
the sum of distances between the individuals and the barycenter of their class.
The algorithm returns exactly the classes defined by the experts, strengthening
the above observation. With this result we obtain also for every class C the
closest individual of the barycenter of C.

Let C be a class among BCS, LUCS, RUCS and Unaffected. We denote by C′

the set of all the individuals which are not in C. We computed the discriminability
τ(B, C, C′) for every basis B and class C. For every class there exist several bases
which are totally discriminant. Precisely there are 147 such bases for BCS, 15,667
such bases for LUCS, 5,064 such bases for RUCS, and 7 such bases for Unaffected.
So for each class we have many simple characterizations (direct criterion and
negation of the criterion of the others classes).

In a second time we used only the 41 anatomical landmarks. The first reason
is to focus only on what has a real anatomical meaning and a precise anatomical
definition. The second reason is to speed up all the calculus as it reduces the
number of tetrahedra from

(
133
4

)
= 12, 457, 445 to

(
41
4

)
= 101, 270.

The k-means algorithm yields a partition into 4 clusters which match exactly
the 4 classes given by the experts, except for one individual among the 60.

There exist bases which are totally discriminant for LUCS (22 bases) and
RUCS (4 bases). The four bases for RUCS all contain the bregma (intersection
of the coronal and the sagittal suture) and the lambda (intersection of the sagittal
and lambdoidal sutures). Each basis contains a third landmark in the median
sagittal plane. This third landmark is the nasion for two bases and the nasale
for the two other bases. For each basis, the fourth landmark is a point of the
right part of the cranial base. For each of these bases, if we replace the fourth
landmark by the symmetric landmark with respect to the median sagittal plane,
we obtain one of the 22 bases which are totally discriminant for LUCS. Figure 5
shows one of the four basis totally discriminant for RUCS and the symmetric
basis which is totally discriminant for LUCS.

For BCS, there is no totally discriminant basis. Let us detail one characteri-
zation we obtained, among other ones. We found two tetrahedra B1 and B2 such
that an individual is BCS if and only if both the orientations of these tetrahedra
are −1. That is BCS = C{B1,B2},x,0 for x(B1) = x(B2) = −1. Their discrim-
inabilities are high and equal 0.89 and 0.91. These two tetrahedra share two
landmarks. Let us denote B1 = 1234 and B2 = 1256. Figure 6 shows these two
tetrahedra on some BCS model, and Figure 7 details their positions for the BCS
class. Figure 8 shows the other possibilities, available for models in the other
classes. The involved landmarks are: the left anterior clinoid process (1); the
left asterion (posterior end of the parietomastoid suture) (2); the left and the
right fronto-zygomatic junction at orbital rim (4 and 3 respectively); the anterior
nasal spine (5); and the left external auditory meatus (6).

For the unaffected individuals, we found (for instance) a slightly more involved
characterization: a set D2, with five bases having discriminabilities between 0.85
and 0.875, such that this class equals CD2,y,2 for some y ∈ {−1,+1}B. That is:
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Fig. 5. One of the 4 bases totally discriminant for the RUCS (left and middle) and the
basis obtained by symmetry which is totally discriminant for the LUCS (right)

Fig. 6. The two tetrahedra (red and blue) which give a characterization for BCS

1

2

3 4
5

6

Fig. 7. The orientations [−1,−1] of B1

(red) and B2 (blue) characterize BCS

Fig. 8. The other possible orientations
[−1,+1], [+1,−1], and [+1,+1] (from left
to right), available for non-BCS models.

x is unaffected if and only if there exist at least three bases in D2 such that the
signs of these bases are the same in x and y.

Finally, we point out that the formal/geometrical/combinatorial character-
izations above are obtained with respect to a given whole set of models, and
may depend noticeably on this initial data. However, they raise the question of
medical anatomical interpretations.
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